|
En épure, le cercle se projette suivant 2 ellipses .
Nous allons représenter cette épure en relevant un
cercle (opération inverse du rabattement ).
On donne le centre O (o,o')
et une horizontale (h,h')du
plan hors point O.
- nous avons exécuté un rabattement
autour de la charnière
(h) en projection horizontale
et défini la position du point (o1)
- puis tracons le cercle avec 8 points (a1
,b1 ,c1 ,d1 ,e1 ,g1 ,m1 ,n1) pour reproduire dans
les 2 projections le tracé des ellipses. Nous utilisons
le principe des points sur la charnière horizontale
(m1 ,n1 ,e1 ,g1 )
- les diamètres (a1 b1 et c1
d1) du cercle définissent les 2 axes de
l'ellipse en projection horizontale puisque ( ab )
est une droite
horizontale égale au diamètre du cercle
et (cd) perpendiculaire à (ab)
- pour la projection frontale , il nous faut le diamètre
frontal et le diamètre ligne
de plus grande pente par rapport au plan frontal . La frontale
nous donne sur le rabattement la droite (m1
n1) coupant la charnière en (g1 )
par construction (e1 ,g1)
perpendiculaire à (m1 n1)
donnant le point (m1 ).
- puis en projection horizontale et projection frontale, les
droites( mn) , (eg)
et (m'n') ,(e'g')
axes de l'ellipse en projection frontale
Voir Vidéo
|
 |